Sylow Theory for Quasigroups Ii: Sectional Action

نویسندگان

  • MICHAEL K. KINYON
  • JONATHAN D. H. SMITH
  • PETR VOJTĚCHOVSKÝ
چکیده

The first paper in this series initiated a study of Sylow theory for quasigroups and Latin squares, based on orbits of the left multiplication group. The current paper is based on socalled pseudo-orbits, which are formed by the images of a subset under the set of left translations. The two approaches agree for groups, but differ in the general case. Subsets are described as sectional if the pseudo-orbit that they generate actually partitions the quasigroup. Sectional subsets are especially well-behaved in the newly identified class of conflatable quasigroups, which provides a unified treatment of Moufang, Bol, and conjugacy-closure properties. Relationships between sectional and Lagrangean properties of subquasigroups are established. Structural implications of sectional properties in loops are investigated, and divisors of the order of a finite quasigroup are classified according to the behavior of sectional subsets and pseudo-orbits. An upper bound is given on the size of a pseudo-orbit. Various interactions of the Sylow theory with design theory are discussed. In particular, it is shown how Sylow theory yields readily computable isomorphism invariants with the resolving power to distinguish each of the 80 Steiner triple systems of order 15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Group Actions, p-Groups, and the Sylow Theorems

In this note we introduce the notion of a group action on a set and use it to prove a number of theorems about p-groups and the Sylow theorems. For undefined terms see any decent book on group theory. The theory of p-groups and the Sylow theorems have a number of applications in Galoistheory. The nice structure of p-groups will translate via the fundamental theorem of Galois theory to nice stru...

متن کامل

Parastrophic-orthogonal Quasigroups

Annotated translation of Parastrophic-orthogonal quasigroups, Acad. Nauk Moldav. SSR, Inst. Mat.s Vychisl. Tsentrom, Kishinev, 1983, prepared by A.D.Keedwell and P.Syrbu based on the original Russian and on an earlier English translation supplied to the rst author by Belousov himself. The notion of orthogonality plays an important role in the theory of Latin squares, and consequently also in th...

متن کامل

Smarandache isotopy theory of Smarandache: quasigroups and loops

The concept of Smarandache isotopy is introduced and its study is explored for Smarandache: groupoids, quasigroups and loops just like the study of isotopy theory was carried out for groupoids, quasigroups and loops. The exploration includes: Smarandache; isotopy and isomorphy classes, Smarandache f, g principal isotopes and G-Smarandache loops.

متن کامل

Isotopy Theory Of Smarandache : Quasigroups And Loops ∗ †

The concept of Smarandache isotopy is introduced and its study is explored for Smarandache: groupoids, quasigroups and loops just like the study of isotopy theory was carried out for groupoids, quasigroups and loops. The exploration includes: Smarandache; isotopy and isomorphy classes, Smarandache f, g principal isotopes and G-Smarandache loops.

متن کامل

A guide to self-distributive quasigroups, or latin quandles

We present an overview of the theory of self-distributive quasigroups, both in the two-sided and one-sided cases, and relate the older results to the modern theory of quandles, to which self-distributive quasigroups are a special case. Most attention is paid to the representation results (loop isotopy, linear representation, homogeneous representation), as the main tool to investigate self-dist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016